## BOOKS

Cliffs, N.J. (1974). 524 pages. \$20.00.

Heretofore, textbooks of polymer science have been written from the chemist's or chemical engineer's viewpoint, with a heavy emphasis on polymer synthesis. However, polymers have become so ubiquitous that their further development and utilization require the elastic resins and thermosets. Fillers in material presented in the text could be disciplines of the mechanical and the rubbery materials are treated as rein- used at the sophomore or junior level. materials engineer. It was the author's forcing particles only. The important This book might be most appropriate intention to provide a text or self-study aspects of nonreinforcing particles are for a first course in a curriculum which guide which assumes the reader has a ignored. basic knowledge of physics, crystallography, solid mechanics, and mathe- well presented, and an unwary reader matics, with a lesser familiarity with could be easily misled into making unorganic chemistry. This approach is warranted generalizations. commendable because new advances in polymeric materials will be primarily based on process improvements and control of morphology rather than on the chemical design of new molecules.

Although Professor Schultz's approach is promising, to this reviewer the product was disappointing. The treatment often varies from great deelectron microscopy but only two sen- New York (1974). 434 pages. \$19.95. tences to scanning electron microscopy; the molecular weight distribution for lished in this subject area that it seems addition polymerization with termina-tion by recombination is treated in de-tion by recombination by dispropor-tail, whereas termination by dispropor-tionation or transfer is ignored. Some ous attempt has been made to establish right. While the temptation must have theories are presented by rather un-some physical insight in the reader conventional approaches, with little in- rather than to illustrate design techmerit than the classical derivations. It erable space is devoted to the elemenis disturbing to find derivations that tary techniques for developing the corare based on oversimplified models rect differential equations. Operational which are later generalized. More rig-orous derivations would appear pref-fourth of the book, and the concept of erable. The book has many flaws, the frequency response is not even menmost serious of which is the excessive tioned until the final chapter. Examnumber of typographical errors; Figure ples of transient response of many sim-2.55 exists in four parts but has no ple processes are presented, and these neering problems are not avoided caption or coordinate details; Figures results are used to illustrate the charmerely because useful results cannot 2.56 and 2.57 also lack coordinate de- acteristics of control systems. tails; some micrographs lack specific The nature of the dimensions of the clear statement of the heuristic process scaling factors; Figures 5.8 and 7.3 are controller gain, which tends to confuse which demands judgment in equipment wrong; Figure 7.9 contains data on students, is treated here by introducnatural and GR-S rubbers but is cited tion of a dimensioned transmitter gain in the text as containing data on  $K_T$  as part of a controller with a nonpoly(diethyl siloxane); a few electron dimensional gain. An alternate ap-unusually creative way and illustrates micrographs are too cluttered and ob- proach would be to make the variables how necessary practical simplifications scure to be easily understood; equa- dimensionless with respect to the con- may be tested in magnitude against tions contain misprints and omissions, troller spans, which is consistent with theory. and are sometimes incorrectly cited. the convention for industrial controllers There are also some erroneous state- and which yields a dimensionless gain. momentum and mass transfer with ments; namely, the reader is first in- The temptation presented to an eager troduced to rubbers ". . . as coiled student to convert a gain from psi/GPM chains, held together by interchain to lb.<sub>F</sub>-min./ft.<sup>5</sup> is then avoided. crosslinks," an incorrect definition as

Polymer Materials Science, Jerold M. this class of materials also includes un- and detailed, and many problems are Schultz, Prentice-Hall, Inc., Englewood crosslinked but vulcanizable elastomers. included which should be both illucrosslinked but vulcanizable elastomers. included which should be both illu-Further on in the same chapter, in the minating and challenging. The detailed discussion of the effect of crosslink density on properties, appears another erthis book should appeal to students but roneous statement: "rubber-like matemay not interest many professors who rials are characterized as highly cross- have unbounded confidence in their linked polymers;" the term highly classes when selecting texts. Except for crosslinked is usually reserved for in- the chapter on distributed systems, the

The concepts and examples are not advanced topics.

L. H. PEEBLES, JR. OFFICE OF NAVAL RESEARCH 495 SUMMER STREET Boston, Mass. 02210

tail to offhand comments: several pages An Introduction to Process Dynamics and \$22.50. are devoted to details of transmission Control, Thomas W. Weber, John Wiley,

dication why these may have any more niques for feedback systems. Consid-

The explanations in the text are clear basic material, and many thoughtfully

discussions and relatively slow pace of had space for a later course on more

> A. D. BAER DEPT. OF CHEMICAL ENGINEERING University of Utah SALT LAKE CITY, UTAH

Transport Phenomena and Living Systems: Biomedical Applications of Momentum and Mass Transfer, E. N. Lightfoot, John Wiley, New York (1974). 495 pages.

Student and practitioners of transport phenomena with interests in solv-There have been so many texts pub- ing biomedical problems will welcome this fine text. The book clearly shows its been great simply to exercise the methodology of transport phenomena in a biological context, Professor Lightfoot has chosen to approach real biological problems from a transport perspective. This is an important distinction. Deduction from fundamentals is pursued to practical limits in a number of areas, and the pursuit is both stimulating and challenging to follow. But practical physiologic, pharmacologic, and engiyet be obtained a priori. There is a design and model development. The book thus integrates the art and science of chemical engineering in an

The text is devoted exclusively to somewhat greater emphasis on the latter. Much of it is comprised of examples which illustrate and enlarge upon

conceived problems are included. Sub- size of the book limits the extent of tic or stochastic inputs. The developject matter is chosen well and dis- the discussion of offered material or ment of the principles of estimation is cussed; a carefully selected bibliography has been included for each section.

This book represents the thoughts of a teacher and scholar who articulates both the substance of chemical engineering and its significance to the solution of biomedical problems. Individuals with a thorough knowledge of classical transport phenomena can The authors explain the objectives of easily expand that knowledge in a the book in the very brief Chapter 1; new and exciting direction. Others must be prepared to read carefully and to expend a certain amount of scratch paper to follow some sections. Those who take the effort will find it a rewarding experience.

ROBERT L. DEDRICK BIOMEDICAL ENG. AND INSTRUMENTATION BRANCH DIVISION OF RESEARCH SERVICES NATIONAL INSTITUTES OF HEALTH BETHESDA, MARYLAND 20014

Process Modeling, Estimation, and Identification, John H. Seinfeld and Leon Lapidus, Vol. 3 of Mathematical Methods in Chemical Engineering, Prentice-Hall, Englewood Cliffs, N.J. (1974). \$19.95. 545 pages.

The mathematical method employs models that represent engineering processes; occasionally, it is used to actually generate the model. By comparison of model prediction with observed behavior, one attempts to estimate the numerical values of the model parameters and to, incidentally, assess the quality of the proposed model. Investigations of this type are common, indeed necessary, in research and development, with particular emphasis on model assessment and systematic parameter evaluation, and in the engineering practice, when the parameters of an accepted model need be finely tuned for optimal representation in some application. Consequently, pa-rameter estimation techniques are important for both the (academic or industrial) researcher and the practicing engineer in the plant.

Today's development of these techniques is rapid and diversified; hence, a textbook which specializes in this branch of engineering mathematics, allowing for the specific circumstances and conditions of chemical engineering, is badly needed. The authors are eminently qualified for the task on account of their productive involvement

The book is well balanced with respect to informative contents, describing and explaining the several techniques and the logical interrelation of hood, Bayesian estimation, moments,

precludes the presentation of additional supplemented by algorithms for actual topics, sources of further information evaluation and assisted by several exare clearly stated. Examples taken pri- amples. Methods for the estimation of marily from chemical engineering situations promote the realistic understanding of abstract concepts. Extensive sets of carefully assembled problems are appended to Chapters 2 to 10; solutions are not included.

The authors explain the objectives of they argue in favor of a separate course in process modeling within the chemical engineering curriculum. In fact, the mathematical background of a senior engineering student satisfies the prerequisites of the book; some basic knowledge of matrix algebra and of matrix analysis is presumed throughout the

Mathematical formulations (for continuous and for discrete variables) of deterministic models for processes, with attention to state variable representation, are introduced in Chapter 2.

Chapters 3, 4, and 5 offer auxiliary material in the form suitable for subsequent use. The Laplace-transformation is introduced in Chapter 3, via the Fourier-transformation, and extended (for discrete data sets) into the Z-transformation; properties and theorems are presented, with special emphasis on the transfer function concept, and then employed in the solution of several challenging problems. Chapter 4 provides a compact introduction to the fundamentals of probability theory, covering that portion of an undergraduate course which is required in the subsequent chapters. In particular, it serves as basis for Chapter 5, Stochastic Mathematical Models, a topic which is not yet generally included in the undergraduate engineering programs in spite of its importance. The chapter includes the stochastic process, its several specialized forms (Markov, Poisson, Wiener), correlation, autocorrelation, and the Fokker-Planck equations, thus supplementing the deterministic models of Chapter 2.

Chapter 5 guides one naturally into Chapter 6, Residence Time Distribution Theory. The development of this theory, which is prerequisite for many other theories of chemical engineering, employs both the deterministic and the stochastic model; thus, it provides an application of the latter and an opportunity of comparison. The estimation of model parameters is systematically developed in Chapter 7; in particular, the discussion includes models expressed by algebraic, differential, or partial differential equations, and methods of least squares, maximum likelithe presented material. Wherever the and transfer functions with determinis-

the reliability of the parameter evaluation together with logical consequences for the design of experiments intended for the estimation of some specific parameter are presented in Chapter 8, Design of Experiments for Parameter Estimation. Chapters 9 and 10, Process Indentification for Linear and Nonlinear Systems, respectively, provide a brief introduction into the task of process identification. In the former, it is shown how a state variable representation of minimum dimension can be constructed for a linear process, when the response to impulse input (or control) variables is known. In the last Chapter 10, the difficulties and possible techniques of identification (Wiener theory, finite Volterra series) of nonlinear systems are explained.

Indeed, the authors have not only suggested the introduction of a course in process modeling, they have also given us the textbook upon which such a course can be built. Of course, one must remember the already crowded curriculum. At the graduate level, Chapters 2 and 5 to 8 (possibly 9 or 10) would form the basis of an interesting and inspiring one-semester course; possibly, through reorientation of an existing graduate course in applied mathematics. Similar thoughts apply to modifications of the undergraduate program. Of great help would be the prior introduction of the stochastic process; possibly, though reorganization of the usual undergraduate course in probability and statistics.

Equally important is the help which this book offers the practicing engineer; familiarized with concepts and with terminology of process modeling, he can follow and appreciate the extensive literature, practically benefit from theoretical and experimental results, and stimulate the development with suggestions and requests.

This is a professional book; engineering as well as mathematical contents are written for the engineer, not for the abstract mathematician; the latter might occasionally disagree with the presentation. For instance, the Dirac (pseudo-) function of the impulse is not presented in the modern, mathematically consistent theory of distributions (Schwartz, 1950). A number of misprints have escaped detection in the proofreading process; fortunately, most of these are easily discovered and corrected.

> WALTER K. NADER DEPT. OF CHEMICAL ENGINEERING University of Alberta Edmonton 7 Canada